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Sparse Mixture of Experts as a Layer

Dense Transformer Block

Sparsely Activated 
MoE Transformer 
Block

MoE Layer



Pros and Cons of Sparse MoE Layer

Cons
👎 Unstable training

☹️Router collapse– router sends all 
tokens to the same expert

☹️ May diverge 

👎 High memory requirement - all 
parameters need to be loaded in vRAM
(GPU memory)

Pros

👍   Increased model parameters 

👍   Efficient pretraining due to conditional 
(sparse) computation

👍   Faster inference 
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Switch Transformer Layer

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s
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Switch Transformer Layer

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

• Greedy routing to only 1 expert

https://www.lcs2.in/
https://home.iitd.ac.in/
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Expert Parallel for 
Sparse MoEs
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Switch Transformer Layer
• MoE-fication of T5 models

T-5 base;  223Mn parameters

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

https://www.lcs2.in/
https://home.iitd.ac.in/


LLMs: Introduction & Recent AdvancesYatin Nandwani

Switch Transformer Layer
• MoE-fication of T5 models

T-5 base;  223Mn parameters

256 experts;  14.7B parameters

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s
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Switch Transformer Layer
• MoE-fication of T5 models

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Neural Scaling Laws
(Unrestricted FLOPS) 

https://www.lcs2.in/
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Switch Transformer Layer
• MoE-fication of T5 models

Sparse Scaling Laws
Matched FLOPS per token

(similar computation budget for all 
models)

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Neural Scaling Laws
(Unrestricted FLOPS) 
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Switch Transformer Layer

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

• MoE-fication of T5 models

On C4 corpus 
(introduced in 

T-5 paper)

❖ Better asymptotic performance

❖ Improved sample efficiency

❖ Diminishing returns as we increase 
#experts

https://www.lcs2.in/
https://home.iitd.ac.in/
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Switch Transformer Layer

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

• MoE-fication of T5 models

FLOPS per token are matched, but additional 
clock time due to:
1. Extra communication cost
2. Router computation

https://www.lcs2.in/
https://home.iitd.ac.in/
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Switch Transformer Layer

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

• MoE-fication of T5 models

7x faster than the base model!

https://www.lcs2.in/
https://home.iitd.ac.in/
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Switch Transformer Layer

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

• MoE-fication of T5 models

But what about comparison with 
a larger dense model?

https://www.lcs2.in/
https://home.iitd.ac.in/
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Expert Parallel for Sparse MoEs
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Model Parallelism for Larger Dense Model
• Pipeline Parallelism: 

• Different Layers on different devices

• Tensor Parallelism:
• Column-wise splitting
• Row-wise splitting

Content credits: \https://colossalai.org/docs/concepts/paradigms_of_parallelism/
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Switch Transformer Layer

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Comparison with T-5 Large (770M), with 3.5x more FLOPs per token

Comparable sample efficiency
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Switch Transformer Layer

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Comparison with T-5 Large (770M), with 3.5x more FLOPs per token

Comparable sample efficiency 2x speedup in clock time!

https://www.lcs2.in/
https://home.iitd.ac.in/
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Switch Transformer Layer

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

• Issues Addressed:

• Complexity of MoE

• Communication cost
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Switch Transformer Layer

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

• Issues Addressed:

• Complexity of MoE

• Communication cost

Top-1 greedy routing:  Challenged the belief that we need to 
route to at least 2 experts for meaningful learning of router 

https://www.lcs2.in/
https://home.iitd.ac.in/
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Content credits: GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding
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Switch Transformer Layer

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

• Issues Addressed:

• Complexity of MoE

• Communication cost

• Training Instability
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Switch Transformer Layer

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

• Issues Addressed:

• Complexity of MoE

• Communication cost

• Training Instability

Top-1 greedy routing:  Challenged the belief that we need to 
route to at least 2 experts for meaningful learning of router 

Improved Training Techniques:
1. Differentiable load balancing loss (avoids router collapse) 

https://www.lcs2.in/
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Load Balancing Loss
• N experts;   T tokens in a batch 𝔅
• 𝑓𝑖: Fraction of tokens dispatched to expert 𝑖

• 𝑃𝑖: Total Probability of selecting expert 𝑖
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Load Balancing Loss
• N experts;   T tokens in a batch 𝔅
• 𝑓𝑖: Fraction of tokens dispatched to expert 𝑖

• 𝑃𝑖: Expected Probability of selecting expert 𝑖

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Using sample mean as an empirical estimate

https://www.lcs2.in/
https://home.iitd.ac.in/
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Load Balancing Loss
• N experts;   T tokens in a batch 𝔅
• 𝑓𝑖: Fraction of tokens dispatched to expert 𝑖

• 𝑃𝑖: Expected Probability of selecting expert 𝑖
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Load Balancing Loss
• N experts;   T tokens in a batch 𝔅
• 𝑓𝑖: Fraction of tokens dispatched to expert 𝑖

• 𝑃𝑖: Expected Probability of selecting expert 𝑖

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

👍Prevents router collapse

👍Improves training efficiency by using all the 

devices equally (remember that each expert 

is on a separate device)

https://www.lcs2.in/
https://home.iitd.ac.in/
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Switch Transformer Layer

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

• Issues Addressed:

• Complexity of MoE

• Communication cost

• Training Instability

Top-1 greedy routing:  Challenged the belief that we need to 
route to at least 2 experts for meaningful learning of router 

Improved Training Techniques:
1. Differentiable load balancing loss (avoids router collapse)  
2. Selective Precision

https://www.lcs2.in/
https://home.iitd.ac.in/
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Selective Precision
• Training in bfloat16:

👍 Reduces communication cost

👎 Increases instability  - common practice is to use optimizer in float32

💡Cast router to float32

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s
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Selective Precision
• Training in bfloat16:

👍 Reduces communication cost

👎 Increases instability  - common practice is to use optimizer in float32

💡Cast router to float32 - because exp. is sensitive to small errors

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s
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Switch Transformer Layer

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

• Issues Addressed:

• Complexity of MoE

• Communication cost

• Training Instability

Top-1 greedy routing:  Challenged the belief that we need to 
route to at least 2 experts for meaningful learning of router 

Improved Training Techniques:
1. Differentiable load balancing loss (avoids router collapse)  
2. Selective Precision
3. Reduced initialization scale

https://www.lcs2.in/
https://home.iitd.ac.in/
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Smaller parameter initialization for stability
• Default initialization:                           𝜇 = 0; 𝜎 = Τ1 𝑑 ;  resample if beyond 2𝜎

• Recommended initialization:         𝜇 = 0; 𝜎 = Τ𝟎.𝟏
𝑑 ;  resample if beyond 2𝜎

Performance of 32 expert model after 3.5k steps (3 random seeds)

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s
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Smaller parameter initialization for stability
• Default initialization:                           𝜇 = 0; 𝜎 = Τ1 𝑑 ;  resample if beyond 2𝜎

• Recommended initialization:         𝜇 = 0; 𝜎 = Τ𝟎.𝟏
𝑑 ;  resample if beyond 2𝜎

Performance of 32 expert model after 3.5k steps (3 random seeds)

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
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Smaller parameter initialization for stability
• Default initialization:                           𝜇 = 0; 𝜎 = Τ1 𝑑 ;  resample if beyond 2𝜎

• Recommended initialization:         𝜇 = 0; 𝜎 = Τ𝟎.𝟏
𝑑 ;  resample if beyond 2𝜎

Performance of 32 expert model after 3.5k steps (3 random seeds)

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s
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Switch Transformer Layer

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

• Issues Addressed:

• Complexity of MoE

• Communication cost

• Training Instability

Top-1 greedy routing:  Challenged the belief that we need to 
route to at least 2 experts for meaningful learning of router 

Improved Training Techniques:
1. Differentiable load balancing loss (avoids router collapse)  
2. Selective Precision
3. Reduced initialization scale
4. Higher regularization of experts

https://www.lcs2.in/
https://home.iitd.ac.in/
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Higher regularization for Experts during fine-tuning 
• Pretrain and then finetune on downstream tasks

👎 MoEs prone to overfitting due to high parameter count

💡Increase expert dropout for increased regularization

• Pretrained on 34B tokens; Uniform dropout performs worse; 
• Low dropout for non-experts and high dropout for expert layers perform the best

https://www.lcs2.in/
https://home.iitd.ac.in/
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• Pretrain and then finetune on downstream tasks

👎 MoEs prone to overfitting due to high parameter count

💡Increase expert dropout for increased regularization

• Pretrained on 34B tokens; Uniform dropout performs worse; 
• Low dropout for non-experts and high dropout for expert layers perform the best
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Switch Transformer Layer

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity
https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

• Issues Addressed:

• Complexity of MoE

• Communication cost

• Training Instability

Top-1 greedy routing:  Challenged the belief that we need to 
route to at least 2 experts for meaningful learning of router 

Improved Training Techniques:
1. Differentiable load balancing loss (avoids router collapse)  
2. Selective Precision
3. Reduced initialization scale
4. Slower learning rate warmup
5. Higher regularization of experts

https://www.lcs2.in/
https://home.iitd.ac.in/
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Distributed Switch Implementation
• Trained on TPUs using Mesh-Tensorflow

👍 Facilitates efficient model-parallel architectures (i.e. experts on different cores)

👎 Statically compiled computational graph – fixed tensor shapes but dynamic computation 

How to set Expert Capacity? 
(Number of tokens processed by each expert)

https://www.lcs2.in/
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Distributed Switch Implementation
• Trained on TPUs using Mesh-Tensorflow

👍 Facilitates efficient model-parallel architectures (i.e. experts on different cores)

👎 Statically compiled computational graph – fixed tensor shapes but dynamic computation 

How to set Expert Capacity? 
(Number of tokens processed by each expert)

Buffer for skewed distribution while trainingUniform distribution of tokens to all experts
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Modulating Expert Capacity via Capacity Factor

6 tokens in a batch

Dropped Token 1 slot wasted
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Modulating Expert Capacity via Capacity Factor

6 tokens in a batch

Dropped Token
3 slots wasted
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No token left behind!
Two stage routing:

❑ Stage 1:  Route to highest probability expert

❑  Stage 2:  Route the dropped tokens to second 
best expert

Can be iterated till no token left behind!
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No token left behind!
Two stage routing:

❑ Stage 1:  Route to highest probability expert

❑  Stage 2:  Route the dropped tokens to second 
best expert

Can be iterated till no token left behind!

❖ Doesn’t work empirically!

❖ Tokens prefer to be routed to same expert

❖ Maybe token dropping introduces 

regularization
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Benchmarking Switch (top-1) versus MoE (noisy top-2)
Time to reach -1.5 Neg. Log Perplexity
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Benchmarking Switch (top-1) versus MoE (noisy top-2)
Time to reach -1.5 Neg. Log Perplexity

• 128 experts

• Alternate 
layers
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Benchmarking Switch (top-1) versus MoE (noisy top-2)
Time to reach -1.5 Neg. Log Perplexity

• 128 experts

• Alternate 
layers

Increase hidden 
dim. & no. of 
heads till it  
matches speed of 
top-2 routing 
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Mixtral of 
Experts
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Mixture of Experts: 8x7B

Replace FFN with MoE in all layers; unlike Switch Transformers
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Mixture of Experts: 8x7B

𝐸𝑖(𝑥)
Combines Swish Activation with 

Gated Linear Unit (GLU)

SwiGLU(x) = x * sigmoid(beta * x) + (1 - sigmoid(beta * x)) * (Wx + b) 
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Reasoning vs knowledge intensive tasks
• FFN layers account for knowledge
• Attention layers account for reasoning or algorithms

Content Credit: https://www.youtube.com/watch?v=RcJ1YXHLv5o&t=2835s
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Reasoning vs knowledge intensive tasks

Knowledge intensive tasks

• Huge gap b/w dense and corresponding sparse models on knowledge intensive tasks
Content Credit: https://www.youtube.com/watch?v=RcJ1YXHLv5o&t=2835s
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Interpreting routing decisions
• Self-attention is often used as an interpretation tool-

• Which token in the input are we attending to while generating the next token?

• Can we use routing decisions for interpreting the model?

• Which tokens are routed to a particular expert?

Content Credit: https://www.youtube.com/watch?v=RcJ1YXHLv5o&t=2835s
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https://home.iitd.ac.in/


LLMs: Introduction & Recent AdvancesYatin Nandwani

Interpreting 
routing decisions
• Validation split of Pile 

Dataset
• Proportion of tokens 

assigned to each expert 
on different domains

• Done for Layer 0, layer 
15, and layer 31

Content Credit: https://www.youtube.com/watch?v=RcJ1YXHLv5o&t=2835s
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Routing of Consecutive Tokens
• How many times two consecutive tokens are routed to the same expert?

Content Credit: https://www.youtube.com/watch?v=RcJ1YXHLv5o&t=2835s
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Routing of Consecutive Tokens
• How many times two consecutive tokens are routed to the same expert?

• Repetitions at the first layer 
are close to random

• Significantly higher at layers 
15 and 31. 

• The high number of 
repetitions shows that expert 
choice exhibits high temporal 
locality at these layers.

Content Credit: https://www.youtube.com/watch?v=RcJ1YXHLv5o&t=2835s
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Which experts are active for different tokens?
• Colors 

represent 
different experts

• Experts do not 
specialize in any 
domain like 
coding, or 
maths.

Coding 
question

Arithmetic 
question

MCQ 
question

Content Credit: https://www.youtube.com/watch?v=RcJ1YXHLv5o&t=2835s
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Interpreting experts

Content Credit: https://www.youtube.com/watch?v=RcJ1YXHLv5o&t=2835s
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Questions
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