Introduction to Mixture of Experts (Part 2)

Yatin Nandwani Research Scientist, IBM Research

Large Language Models: Introduction and Recent Advances

 $\mathsf{ELL881} \cdot \mathsf{AIL821}$

Semester 1, 2024-2025

Pros and Cons of Sparse MoE Layer

Pros

Increased model parameters

Efficient pretraining due to conditional (sparse) computation

Cons

Unstable training

Router collapse– router sends all tokens to the same expert

😢 May diverge

High memory requirement - all parameters need to be loaded in vRAM (GPU memory)

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Yatin Nandwani

Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity

 $\mathbf{William} \ \mathbf{Fedus}^*$

LIAMFEDUS@GOOGLE.COM

Barret Zoph* BARRETZOPH@GOOGLE.COM

Noam Shazeer

NOAM@GOOGLE.COM Google, Mountain View, CA 94043, USA

 ${\bf Editor:} \ {\rm Alexander} \ {\rm Clark}$

Abstract

In deep learning, models typically reuse the same parameters for all inputs. Mixture of Experts (MoE) models defy this and instead select *different* parameters for each incoming example. The result is a sparsely-activated model—with an outrageous number of parameters—but a constant computational cost. However, despite several notable successes of MoE, widespread adoption has been hindered by complexity, communication costs, and training instability. We address these with the introduction of the Switch Transformer.

Yatin Nandwani

• Greedy routing to only 1 expert

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Yatin Nandwani

Device O

Yatin Nandwani

Yatin Nandwani

Yatin Nandwani

• MoE-fication of T5 models

Yatin Nandwani

MoE-fication of T5 models

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

LLMs: Introduction & Recent Advances

Yatin Nandwani

• MoE-fication of T5 models

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Yatin Nandwani

• MoE-fication of T5 models

Yatin Nandwani

MoE-fication of T5 models

Yatin Nandwani

LLMs: Introduction & Recent Advances

Neural Scaling Laws

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

304

Yatin Nandwani

• MoE-fication of T5 models

FLOPS per token are matched, but additional clock time due to:

- 1. Extra communication cost
- 2. Router computation

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Yatin Nandwani

MoE-fication of T5 models

7x faster than the base model!

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Yatin Nandwani

• MoE-fication of T5 models

But what about comparison with a larger dense model?

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Yatin Nandwani

Yatin Nandwani

• Pipeline Parallelism:

• Different Layers on different devices

Content credits: \https://colossalai.org/docs/concepts/paradigms_of_parallelism/

Yatin Nandwani

• Pipeline Parallelism:

• Different Layers on different devices

GPU 0

Content credits: \https://colossalai.org/docs/concepts/paradigms_of_parallelism/

Yatin Nandwani

• Pipeline Parallelism:

• Different Layers on different devices

Content credits: \https://colossalai.org/docs/concepts/paradigms_of_parallelism/

Yatin Nandwani

• Pipeline Parallelism:

• Different Layers on different devices

Content credits: https://colossalai.org/docs/concepts/paradigms_of_parallelism/

Yatin Nandwani

• Pipeline Parallelism:

• Different Layers on different devices

• Tensor Parallelism:

Content credits: \https://colossalai.org/docs/concepts/paradigms_of_parallelism/

Yatin Nandwani

• Pipeline Parallelism:

• Different Layers on different devices

- Tensor Parallelism:
 - 1. Column-wise splitting

Column-Splitting Tensor Parallel

of_parallelism/

Yatin Nandwani

- Pipeline Parallelism:
 - Different Layers on different devices

- Tensor Parallelism:
 - 1. Column-wise splitting

Column-Splitting Tensor Parallel

of_parallelism/

Yatin Nandwani

- Pipeline Parallelism:
 - Different Layers on different devices

- Tensor Parallelism:
 - 1. Column-wise splitting

Column-Splitting Tensor Parallel

of_parallelism/

= A X B

Non-distributed

С

LLMs: Introduction & Recent Advances

Yatin Nandwani

- Pipeline Parallelism:
 - Different Layers on different devices

• Tensor Parallelism:

CS

1. Column-wise splitting

indwani

42

LLMs: Introduction & Recent Advances

of parallelism/

Non-distributed

Yatin Nandwani

• Different Layers on different devices

- Tensor Parallelism:
 - 1. Column-wise splitting
 - 2. Row-wise splitting

Content credits: https://lightning.ai/docs/pytorch/stable/advanced/model_parallel/tp.html

Yatin Nandwani

Different Layers on different devices •

- 1. Column-wise splitting
- **Row-wise splitting** 2.

*

*----

Content credits: https://lightning.ai/docs/pytorch/stable/advanced/model_parallel/tp.html

Yatin Nandwani

GPU 0

- Pipeline Parallelism:
 - Different Layers on different devices

- Tensor Parallelism:
 - 1. Column-wise splitting
 - 2. Row-wise splitting

Content credits: https://lightning.ai/docs/pytorch/stable/advanced/model_parallel/tp.html

Yatin Nandwani

X

*

⊁----

Comparison with T-5 Large (770M), with 3.5x more FLOPs per token

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Yatin Nandwani

Comparison with T-5 Large (770M), with 3.5x more FLOPs per token

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Yatin Nandwani

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Yatin Nandwani

- Issues Addressed:
 - Complexity of MoE
 - Communication cost _

Top-1 greedy routing: Challenged the belief that we need to route to at least 2 experts for meaningful learning of router

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Yatin Nandwani

Content credits: GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding

Yatin Nandwani

Switch Transformer Layer

- Issues Addressed:
 - Complexity of MoE
 - Communication cost _
 - Training Instability

Top-1 greedy routing: Challenged the belief that we need to route to at least 2 experts for meaningful learning of router

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Yatin Nandwani

Switch Transformer Layer

- Issues Addressed:
 - Complexity of MoE
 - Communication cost_
 - Training Instability

Top-1 greedy routing: Challenged the belief that we need to route to at least 2 experts for meaningful learning of router

Improved Training Techniques:

1. Differentiable load balancing loss (avoids router collapse)

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Yatin Nandwani

- N experts; T tokens in a batch \mathfrak{B}
- f_i : Fraction of tokens dispatched to expert *i*

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Yatin Nandwani

- *N* experts; *T* tokens in a batch \mathfrak{B}
- f_i : Fraction of tokens dispatched to expert *i*

$$f_i = \frac{1}{T} \sum_{x \in \mathcal{B}} \mathbb{1}\{\operatorname{argmax} p(x) = i\}$$

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Yatin Nandwani

- *N* experts; *T* tokens in a batch \mathfrak{B}
- f_i : Fraction of tokens dispatched to expert i

$$f_i = \frac{1}{T} \sum_{x \in \mathcal{B}} \mathbb{1}\{\operatorname{argmax} p(x) = i\}$$

• P_i : Expected Probability of selecting expert i

Yatin Nandwani

- *N* experts; *T* tokens in a batch \mathfrak{B}
- f_i : Fraction of tokens dispatched to expert *i*

$$f_i = \frac{1}{T} \sum_{x \in \mathcal{B}} \mathbb{1}\{\operatorname{argmax} p(x) = i\}$$

• P_i : Expected Probability of selecting expert i

$$P_i = \frac{1}{T} \sum_{x \in \mathcal{B}} p_i(x).$$

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Yatin Nandwani

- *N* experts; *T* tokens in a batch \mathfrak{B}
- f_i : Fraction of tokens dispatched to expert i

$$f_i = \frac{1}{T} \sum_{x \in \mathcal{B}} \mathbb{1}\{\operatorname{argmax} p(x) = i\}$$

• *P_i*: Expected Probability of selecting expert *i*

$$P_i = \frac{1}{T} \sum_{x \in \mathcal{B}} p_i(x).$$
 Using sample mean as an empirical estimate

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Yatin Nandwani

- *N* experts; *T* tokens in a batch \mathfrak{B}
- f_i : Fraction of tokens dispatched to expert i

$$f_i = \frac{1}{T} \sum_{x \in \mathcal{B}} \mathbb{1}\{\operatorname{argmax} p(x) = i\}$$

• P_i : Expected Probability of selecting expert i

$$P_{i} = \frac{1}{T} \sum_{x \in \mathcal{B}} p_{i}(x).$$
$$loss = \alpha \cdot N \cdot \sum_{i=1}^{N} f_{i} \cdot P_{i}$$

Yatin Nandwani

- *N* experts; *T* tokens in a batch \mathfrak{B}
- f_i : Fraction of tokens dispatched to expert *i*

$$f_i = \frac{1}{T} \sum_{x \in \mathcal{B}} \mathbb{1}\{\operatorname{argmax} p(x) = i\}$$

• P_i : Expected Probability of selecting expert i

Prevents router collapse
Improves training efficiency by using all the

devices equally (remember that each expert

is on a separate device)

$$loss = \alpha \cdot N \cdot \sum_{i=1}^{N} f_i \cdot P_i$$

 $P_i = \frac{1}{T} \sum_{x \in \mathcal{B}} p_i(x).$

Yatin Nandwani

Switch Transformer Layer

- Issues Addressed:
 - Complexity of MoE
 - Communication cost_
 - Training Instability

Top-1 greedy routing: Challenged the belief that we need to route to at least 2 experts for meaningful learning of router

Improved Training Techniques:

- 1. Differentiable load balancing loss (avoids router collapse)
- 2. Selective Precision

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Yatin Nandwani

Selective Precision

• Training in bfloat16:

Beduces communication cost

Yatin Nandwani

Selective Precision

• Training in bfloat16:

Reduces communication cost

Increases instability - common practice is to use optimizer in float32

Yatin Nandwani

Selective Precision

• Training in bfloat16:

Reduces communication cost

Increases instability - common practice is to use optimizer in float32

 $\ensuremath{\textcircled{O}}$ Cast router to float32 - because exp. is sensitive to small errors

Model	Quality	Speed
(precision)	(Neg. Log Perp.) (\uparrow)	(Examples/sec) (\uparrow)
Switch-Base (float32)	-1.718	1160
Switch-Base (bfloat 16)	-3.780 [diverged]	1390
Switch-Base (Selective precision)	-1.716	1390

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Switch Transformer Layer

- Issues Addressed:
 - Complexity of MoE
 - Communication cost_
 - Training Instability

Top-1 greedy routing: Challenged the belief that we need to route to at least 2 experts for meaningful learning of router

Improved Training Techniques:

- 1. Differentiable load balancing loss (avoids router collapse)
- 2. Selective Precision
- 3. Reduced initialization scale

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Smaller parameter initialization for stability

• Default initialization: $\mu = 0$; $\sigma = \sqrt{1/d}$; resample if beyond 2σ

Yatin Nandwani

Smaller parameter initialization for stability

- Default initialization:
- Recommended initialization:

 $\mu=0;~\sigma=\sqrt{1/_d}~$; resample if beyond 2σ

vation: $\mu = 0; \ \sigma = \sqrt{\frac{0.1}{d}}$; resample if beyond 2σ

Yatin Nandwani

Smaller parameter initialization for stability

- Default initialization:
- Recommended initialization:

$$\mu$$
 = 0; σ = $\sqrt{1/_d}$; resample if beyond 2σ

: $\mu = 0$; $\sigma = \sqrt{\frac{0.1}{d}}$; resample if beyond 2σ

Model (Initialization scale)	Average Quality	Std. Dev. of Quality
	(Neg. Log Perp.)	(Neg. Log Perp.)
Switch-Base (0.1x-init)	-2.72	0.01
Switch-Base $(1.0x-init)$	-3.60	0.68

Performance of 32 expert model after 3.5k steps (3 random seeds)

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Yatin Nandwani

Switch Transformer Layer

- Issues Addressed:
 - Complexity of MoE
 - Communication cost_
 - Training Instability

Top-1 greedy routing: Challenged the belief that we need to route to at least 2 experts for meaningful learning of router

Improved Training Techniques:

- 1. Differentiable load balancing loss (avoids router collapse)
- 2. Selective Precision
- 3. Reduced initialization scale
- 4. Higher regularization of experts

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

Higher regularization for Experts during fine-tuning

• Pretrain and then finetune on downstream tasks

Des prone to overfitting due to high parameter count

Higher regularization for Experts during fine-tuning

• Pretrain and then finetune on downstream tasks

Des prone to overfitting due to high parameter count

 $\ensuremath{\textcircled{O}}$ Increase expert dropout for increased regularization

Higher regularization for Experts during fine-tuning

- Pretrain and then finetune on downstream tasks
 - Des prone to overfitting due to high parameter count

 $\ensuremath{\textcircled{O}}$ Increase expert dropout for increased regularization

Model (dropout)	GLUE	CNNDM	SQuAD	SuperGLUE
T5-Base $(d=0.1)$	82.9	19.6	83.5	72.4
Switch-Base $(d=0.1)$	84.7	19.1	83.7	73.0
Switch-Base $(d=0.2)$	84.4	19.2	83.9	73.2
Switch-Base $(d=0.3)$	83.9	19.6	83.4	70.7
Switch-Base ($d=0.1$, $ed=0.4$)	85.2	19.6	83.7	73.0

Pretrained on 34B tokens; Uniform dropout performs worse;

• Low dropout for non-experts and high dropout for expert layers perform the best

Switch Transformer Layer

- Issues Addressed:
 - Complexity of MoE
 - Communication cost_
 - Training Instability

Top-1 greedy routing: Challenged the belief that we need to route to at least 2 experts for meaningful learning of router

Improved Training Techniques:

- 1. Differentiable load balancing loss (avoids router collapse)
- 2. Selective Precision
- 3. Reduced initialization scale
- 4. Slower learning rate warmup
- 5. Higher regularization of experts

Content credits: Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity https://www.youtube.com/watch?v=U8J32Z3qV8s&t=2816s

• Trained on TPUs using Mesh-Tensorflow

Facilitates efficient model-parallel architectures (*i.e.* experts on different cores)

- Trained on TPUs using Mesh-Tensorflow
 - Facilitates efficient model-parallel architectures (*i.e.* experts on different cores)
 - \textcircled Statically compiled computational graph fixed tensor shapes but dynamic computation \checkmark

10,000

500

W

- Trained on TPUs using Mesh-Tensorflow
 - Facilitates efficient model-parallel architectures (*i.e.* experts on different cores)
 - Statically compiled computational graph fixed tensor shapes but dynamic computation

How to set Expert Capacity?

(Number of tokens processed by each expert)

- Trained on TPUs using Mesh-Tensorflow
 - Facilitates efficient model-parallel architectures (*i.e.* experts on different cores)
 - Statically compiled computational graph fixed tensor shapes but dynamic computation

How to set Expert Capacity?

(Number of tokens processed by each expert)

expert capacity =
$$\left(\frac{\text{tokens per batch}}{\text{number of experts}}\right)^2 \frac{T}{E}$$
 $\frac{0,000}{1000} = 10$ $\frac{1}{1000}$

- Trained on TPUs using Mesh-Tensorflow
 - Facilitates efficient model-parallel architectures (*i.e.* experts on different cores)
 - Statically compiled computational graph fixed tensor shapes but dynamic computation

How to set Expert Capacity?

(Number of tokens processed by each expert)

expert capacity =
$$\left(\frac{\text{tokens per batch}}{\text{number of experts}}\right)$$

Uniform distribution of tokens to all experts

- Trained on TPUs using Mesh-Tensorflow
 - Facilitates efficient model-parallel architectures (*i.e.* experts on different cores)
 - Statically compiled computational graph fixed tensor shapes but dynamic computation

- Trained on TPUs using Mesh-Tensorflow
 - Facilitates efficient model-parallel architectures (*i.e.* experts on different cores)
 - Statically compiled computational graph fixed tensor shapes but dynamic computation

Terminology

- **Experts:** Split across devices, each having their own unique parameters. Perform standard feedforward computation.
- Expert Capacity: Batch size of each expert. Calculated as
- (tokens_per_batch / num_experts) * capacity_factor

Expert 1	Expert 2	Expert 3
Device 0	Device 1	Device 2

Terminology

- **Experts:** Split across devices, each having their own unique parameters. Perform standard feedforward computation.
- Expert Capacity: Batch size of each expert. Calculated as
- (tokens_per_batch / num_experts) * capacity_factor
- Capacity Factor: Used when calculating expert capacity. Expert capacity allows more buffer to help mitigate token overflow during routing.

Yatin Nandwani

Terminology

- **Experts:** Split across devices, each having their own unique parameters. Perform standard feedforward computation.
- Expert Capacity: Batch size of each expert. Calculated as
- (tokens_per_batch / num_experts) * capacity_factor
- **Capacity Factor:** Used when calculating expert capacity. Expert capacity allows more buffer to help mitigate token overflow during routing.

Yatin Nandwani

Terminology (Capacity Factor: 1.0) Expert 1 Expert 2 Expert 3 • Experts: Split across devices, each having their own unique Device 1 Device 0 Device 2 parameters. Perform standard feedforward computation. . Expert Capacity: Batch size of each expert. Calculated as (tokens_per_batch / num_experts) * capacity factor Wasted capacity **Dropped Token** . Capacity Factor: Used when calculating expert capacity. Expert capacity allows more buffer to help mitigate token overflow during Device 0 routing. Tokens

6 tokens in a batch

Yatin Nandwani

Terminology (Capacity Factor: 1.0) Expert 1 Expert 2 Expert 3 • Experts: Split across devices, each having their own unique Device 1 Device 0 Device 2 parameters. Perform standard feedforward computation. . Expert Capacity: Batch size of each expert. Calculated as (tokens_per_batch / num_experts) * capacity factor Wasted capacity **Dropped Token** . Capacity Factor: Used when calculating expert capacity. Expert capacity allows more buffer to help mitigate token overflow during Device 0 routing. Tokens 6 tokens in a batch

Yatin Nandwani

Yatin Nandwani
Modulating Expert Capacity via Capacity Factor

Two stage routing:

□ Stage 1: Route to highest probability expert

Yatin Nandwani

Two stage routing:

□ Stage 1: Route to highest probability expert

□ Stage 2: Route the dropped tokens to second best expert

Two stage routing:

□ Stage 1: Route to highest probability expert

□ Stage 2: Route the dropped tokens to second best expert

Can be iterated till no token left behind!

Two stage routing:

□ Stage 1: Route to highest probability expert

□ Stage 2: Route the dropped tokens to second best expert

Can be iterated till no token left behind!

- Doesn't work empirically!
- Tokens prefer to be routed to same expert
- Maybe token dropping introduces

regularization

	Ti	Log Perplexity		
Model	Capacity	Quality after	Time to Quality	Speed (\uparrow)
	Factor	100k steps (\uparrow)	Threshold (\downarrow)	(examples/sec)
		(Neg. Log Perp.)	(hours)	
T5-Base		-1.731	Not achieved ^{\dagger}	1600
T5-Large		-1.550	131.1	470

		Tir	me to reach -1.5 Neg.	Log Perplexity	
	Model	Capacity	Quality after	Time to Quality	Speed (\uparrow)
• 128 experts		Factor	100k steps (\uparrow)	Threshold (\downarrow)	(examples/sec)
• Altorpoto			(Neg. Log Perp.)	(hours)	
	T5-Base		-1.731	Not achieved ^{\dagger}	1600
layers	T5-Large		-1.550	131.1	470
	MoE-Base	2.0	-1.547	68.7	840
	Switch-Base	2.0	-1.554	72.8	860

		Time to reach -1.5 Neg. Log Perplexity				
		Model	Capacity	Quality after	Time to Quality	Speed (\uparrow)
• •	128 experts		Factor	100k steps (\uparrow)	Threshold (\downarrow)	(examples/sec)
	Alternate layers			(Neg. Log Perp.)	(hours)	
• /		T5-Base		-1.731	Not achieved ^{\dagger}	1600
L L		T5-Large		-1.550	131.1	470
		MoE-Base	2.0	-1.547	68.7	840
		Switch-Base	2.0	-1.554	72.8	860
		MoE-Base	1.25	-1.559	80.7	790
		Switch-Base	1.25	-1.553	65.0	910

		Time to reach -1.5 Neg. Log Perplexity				
		Model	Capacity	Quality after	Time to Quality	Speed (\uparrow)
•	128 experts		Factor	100k steps (\uparrow)	Threshold (\downarrow)	(examples/sec)
	Alternate layers			(Neg. Log Perp.)	(hours)	
•		T5-Base		-1.731	Not achieved ^{\dagger}	1600
		T5-Large		-1.550	131.1	470
		MoE-Base	2.0	-1.547	68.7	840
		Switch-Base	2.0	-1.554	72.8	860
		MoE-Base	1.25	-1.559	80.7	790
		Switch-Base	1.25	-1.553	65.0	910
		MoE-Base	1.0	-1.572	80.1	860
		Switch-Base	1.0	-1.561	62.8	1000

Yatin Nandwani

	Time to reach -1.5 Neg. Log Perplexity					
	Model	Capacity	Quality after	Time to Quality	Speed (\uparrow)	
• 128 experts		Factor	100k steps (\uparrow)	Threshold (\downarrow)	(examples/sec)	
 Altornata 			(Neg. Log Perp.)	(hours)		
 Allemale lovero 	T5-Base		-1.731	Not achieved ^{\dagger}	1600	
layers	T5-Large		-1.550	131.1	470	
	MoE-Base	2.0	-1.547	68.7	840	
	Switch-Base	2.0	-1.554	72.8	860	
Increase hidden	MoE-Base	1.25	-1.559	80.7	790	
dim. & no. of	Switch-Base	1.25	-1.553	65.0	910	
heads till it	MoE-Base	1.0	-1.572	80.1	860	
matches speed of	Switch-Base	1.0	-1.561	62.8	1000	
top-2 routing	Switch-Base+	1.0	-1.534	67.6	780	

Mixtral of Experts

Abstract

We introduce Mixtral 8x7B, a Sparse Mixture of Experts (SMoE) language model. Mixtral has the same architecture as Mistral 7B, with the difference that each layer is composed of 8 feedforward blocks (i.e. experts). For every token, at each layer, a router network selects two experts to process the current state and combine their outputs. Even though each token only sees two experts, the selected experts can be different at each timestep. As a result, each token has access to 47B parameters, but only uses 13B active parameters during inference. Mixtral was trained with a context size of 32k tokens and it outperforms or matches Llama 2 70B and GPT-3.5 across all evaluated benchmarks. In particular, Mixtral vastly outperforms Llama 2 70B on mathematics, code

Yatin Nandwani

Yatin Nandwani

 $G(x) := \text{Softmax}(\text{TopK}(x \cdot W_g))_{+}$

$$y = \sum_{i=0}^{n-1} \operatorname{Softmax}(\operatorname{Top2}(x \cdot W_g))_i \cdot \operatorname{SwiGLU}_i(x) - E_i(x)$$

 $G(x) := \text{Softmax}(\text{TopK}(x \cdot W_g))_{+}$

Reasoning vs knowledge intensive tasks

- FFN layers account for knowledge
- Attention layers account for reasoning or algorithms

Content Credit: https://www.youtube.com/watch?v=RcJ1YXHLv5o&t=2835s

Yatin Nandwani

Reasoning vs knowledge intensive tasks

• Huge gap b/w dense and corresponding sparse models on knowledge intensive tasks

Content Credit: https://www.youtube.com/watch?v=RcJ1YXHLv5o&t=2835s

Yatin Nandwani

Interpreting routing decisions

- Self-attention is often used as an interpretation tool-
 - Which token in the input are we attending to while generating the next token?
- Can we use routing decisions for interpreting the model?
 - Which tokens are routed to a particular expert?

Yatin Nandwani

Interpreting routing decisions

- Validation split of Pile Dataset
- Proportion of tokens assigned to each expert on different domains
- Done for Layer 0, layer
 15, and layer 31

Content Credit: https://www.youtube.com/watch?v=RcJ1YXHLv5o&t=2835s

Routing of Consecutive Tokens

• How many times two consecutive tokens are routed to the same expert?

Content Credit: https://www.youtube.com/watch?v=RcJ1YXHLv5o&t=2835s

Yatin Nandwani

Routing of Consecutive Tokens

• How many times two consecutive tokens are routed to the same expert?

 Repetitions at the first layer 		Layer 0	First choice Layer 15	Layer 31
are close to random	ArXiv	14.0%	27.9%	22.7%
 Significantly higher at layers 15 and 31. 	DM Mathematics Github	$14.1\% \\ 14.9\%$	$28.4\% \\ 28.1\%$	19.7% 19.7%
 The high number of repetitions shows that expert choice exhibits high temporal locality at these layers. 	Gutenberg PhilPapers PubMed Abstracts StackExchange Wilkingdia (ap)	13.9% 13.6% 14.2% 13.6% 14.4%	26.1% 25.3% 24.6% 27.2% 23.6%	26.3% 22.1% 22.0% 23.6% 25.3%
	wikipeula (ell)	14.470	23.070	23.370

Content Credit: https://www.youtube.com/watch?v=RcJ1YXHLv5o&t=2835s

Which experts are active for different tokens?

	Layer 0	Layer 15	Layer 31	
Colors	<pre>class MoeLayer(nn.Module): definit(self, experts: List[nn.Module], super()init() assert len(experts) > 0</pre>	<pre>class MoeLayer(nn.Module): definit(self, experts: List[nn.Module], super()init() assert len(experts) > 0</pre>	<pre>class MoeLayer(nn.Module): definit(self, experts: List[nn.Module], super()init() assert len(experts) > 0</pre>	
represent	<pre>self.experts = nn.ModuleList(experts) self.gate = gate self.args = moe_args</pre>	<pre>self.experts = nn.ModuleList(experts) self.gate = gate self.args = moe_args</pre>	<pre>self.experts = nn.ModuleList(experts) self.gate = gate self.args = moe_args</pre>	
different experts	<pre>def forward(self, inputs: torch.Tensor): inputs_squashed = inputs.view(-1, inputs. gate_logits = self.gate(inputs_squashed)</pre>	<pre>def forward(self, inputs: torch.Tensor): inputs_squashed = inputs.view(-1, inputs. gate_logits = self.gate(inputs_squashed)</pre>	<pre>def forward(self, inputs: torch.Tensor): inputs_squashed = inputs.view(-1, inputs. gate_logits = self.gate(inputs_squashed)</pre>	Coding
Experts do not	<pre>weights, selected_experts = torch.topk(gate_logits, self.args.num_experts_pe) weights = nn.functional.softmax(weights,</pre>	<pre>weights, selected_experts = torch.topk(gate_logits, self.args.num_experts_pe) weights = nn.functional.softmax(weights,</pre>	<pre>weights, selected_experts = torch.topk(gate_logits, self.args.num_experts_pe) weights = nn.functional.softmax(weights,</pre>	question
specialize in any	<pre>dim=1, dtype=torch.float,).type_as(inputs)</pre>	<pre>dim=1, dtype=torch.float,).type_as(inputs)</pre>	<pre>dim=1, dtype=torch.float,).type_as(inputs)</pre>	
domain like	<pre>results = torch.zeros_like(inputs_squashe for i, expert in enumerate(self.experts): batch_idx, nth_expert = torch.where(s results[batch_idx]) += weights[batch_idx]</pre>	<pre>results = torch.zeros_like(inputs_squashe for i, expert in enumerate(self.experts): batch_idx, nth_expert = torch.where(s results[batch_idx] += weights[batch_idx]</pre>	<pre>results = torch.zeros_like(inputs_squashe for i, expert in enumerate(self.experts): batch_idx, nth_expert = torch.where(s results(batch_idx) += weights(batch_ick);</pre>	
coding, or	inputs_squashed[batch_idx]) return results.view_as(inputs)	<pre>inputs_squashed[batch_idx]) return results.view_as(inputs)</pre>	inputs_squashed[batch_idx]) return results.view_as(inputs)	
naths.	Question: Solve $-42*r + 27*c = -1167$ and $130*r$ Answer: 4	Question: Solve $-42 \times r + 27 \times c = -1167$ and $130 \times r$ Answer: 4	Question: Solve $-42*r + 27*c = -1167$ and $130*r$ Answer: 4	Arithmetic
	Question: Calculate -841880142.544 + 411127. Answer: -841469015.544	Question: Calculate -841880142.544 + 411127. Answer: -841469015.544	Question: Calculate -841880142.544 + 411127. Answer: -841469015.544	< question
	Question: Let x(g) = 9*g + 1. Let q(c) = 2*c + Answer: 54*a - 30	Question: Let x(g) = 9*g + 1. Let q(c) = 2*c + Answer: 54*a - 30	Question: Let $x(g) = 9*g + 1$. Let $q(c) = 2*c + Answer: 54*a - 30$	\searrow
	A model airplane flies slower when flying into th wind and faster with wind at its back. When launch	A model airplane flies slower when flying into th wind and faster with wind at its back. When launch	A model airplane flies slower when flying into th wind and faster with wind at its back. When launch	MCQ
	compared with flying in still air is (A) the same (B) greater (C) less (D) either grea or less depending on wind speed	compared with flying in still air is (A) the same (B) greater (C) less (D) either grea or less depending on wind speed	<pre>compared with flying in still air is (A) the same (B) greater (C) less (D) either grea or less depending on wind speed</pre>	question

Content Credit: https://www.youtube.com/watch?v=RcJ1YXHLv5o&t=2835s

•

•

Yatin Nandwani

Interpreting experts

• There is one expert in one of the layers that's particularly crucial.

Content Credit: https://www.youtube.com/watch?v=RcJ1YXHLv5o&t=2835s

Yatin Nandwani

Yatin Nandwani